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Abstract: Tennis matches involve complex interactions between players, where strategic decisions 
and momentum shifts play a crucial role in determining the outcome. Understanding these dynamics 
can provide valuable insights for athletes and coaches to enhance performance. In this study, we 
analyze the role of momentum in tennis matches using data-driven models. To track match 
progression, we develop a Hierarchical Markov Model, visualizing scoring trends and performance 
variations in the 2023 Wimbledon Gentlemen’s final. The analysis reveals that Carlos Alcaraz 
excelled in the 2nd and 3rd sets, while Novak Djokovic performed better in the 1st, 4th, and 5th sets. 
Additionally, the probability of winning a service point was significantly higher (77.27% for 
Alcaraz and 79.17% for Djokovic) compared to return points. To investigate the authenticity of 
momentum, we define it using a weighted approach incorporating technical, psychological, and 
strategic factors. Bootstrap hypothesis testing (t-statistic = 45.3791, p-value = 0.008) confirms that 
momentum is not a random phenomenon. Furthermore, logistic regression analysis establishes a 
strong correlation between momentum and performance. We employ a Long Short-Term Memory 
(LSTM) model to predict momentum fluctuations, identifying Unforced Errors as the most 
influential factor. The model effectively forecasts turning points, with an R2 of 0.9501 and RMSE of 
0.6701, demonstrating its reliability. Sensitivity analysis and generalizability tests further validate 
its robustness across different court surfaces and player genders. Our findings offer strategic 
recommendations for coaches and athletes, emphasizing the importance of minimizing unforced 
errors, adapting game pace, and capitalizing on momentum shifts. These insights can be 
instrumental in optimizing match strategies and improving competitive performance.  

1. Introduction  
1.1. Problem Background 

Tennis demands physical, technical, strategic, and psychological excellence, with momentum 
shifts often determining match outcomes. However, momentum remains conceptually debated—
viewed either as a psychological phenomenon or statistical pattern. Despite its importance, 
momentum lacks rigorous quantification in tennis research. Traditional analysis emphasizes 
technical statistics but fails to address how momentum shifts occur, whether they follow identifiable 
patterns, or if they are merely random occurrences[1]. This research gap limits the development of 
predictive models that could provide real-time strategic insights. Momentum analysis has 
significant practical value, as identifying key influencing factors could help players develop 
resilient mental approaches and adapt tactics during matches. Ultimately, predictive modeling could 
enable players to anticipate critical turning points and adjust gameplay accordingly, bridging the 
gap between analytics and practical match strategy. 

1.2. Research Objectives 
To address these challenges, this study aims to establish a systematic framework for analyzing 

and predicting momentum in tennis matches. Our research focuses on four key objectives: 
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1) Developing a Hierarchical Markov Model to track and quantify the scoring flow of a match, 
providing a structured representation of players’ performance dynamics. 

2) Investigating the authenticity of momentum using statistical hypothesis testing, specifically 
the Bootstrap method, to determine whether momentum is a random occurrence or follows a 
structured pattern. 

3) Constructing a predictive model using Long Short-Term Memory (LSTM) networks to 
forecast momentum fluctuations and identify the most influential factors contributing to momentum 
shifts. 

4) Evaluating the generalizability of our model across different match conditions, including 
variations in court surfaces and gender differences among players, to assess its applicability beyond 
individual matches. 

Our contributions to the field of sports analytics are threefold. First, we introduce a novel 
momentum measurement approach by integrating technical, psychological, and strategic factors 
through the CRITIC weighting method. This allows us to define momentum in a more 
comprehensive and data-driven manner. Second, our predictive model leverages deep learning 
techniques to anticipate momentum shifts in real time, offering practical insights for players and 
coaches to make informed strategic decisions. Finally, by testing our model across different 
conditions, we provide a thorough evaluation of its robustness, ensuring that our findings have 
broad applicability in the domain of professional tennis[2]. 

2. Related Work 
Tennis match analysis has evolved from pioneering Markov chains to hierarchical models that 

better capture scoring structure, while the concept of momentum remains contentious with some 
researchers proposing that success breeds success and others identifying critical psychological 
turning points in matches. Recent methodological advances include Long Short-Term Memory 
(LSTM) networks, which have been applied to predict sports outcomes from sequential data, and 
the CRITIC method for objectively weighting performance indicators. These techniques enable 
practical applications as demonstrated by studies showing how tactical adjustments influence 
outcomes, and point-by-point analysis approaches that bridge theoretical models and coaching 
strategies, advancing both performance analysis and in-match decision-making in professional 
tennis. 

3. Methodology 
3.1. Data Collection and Preprocessing 

Our study primarily analyzed the 2023 Wimbledon Gentlemen’s singles data, supplemented by 
additional datasets from the Australian Open and US Open for model verification and cross-
validation purposes. The initial data presented several challenges that required careful preprocessing. 
We encountered 752 missing values (approximately 8.4% of observations) in the “speed_mph” field, 
which were addressed using nearest neighbor interpolation based on surrounding point data to 
maintain temporal consistency and data integrity. 

The categorical variables “serve_width,” “serve_depth,” and “return_depth” contained 54, 54, 
and 1309 missing values respectively, which were filled using the plurality method with contextual 
weighting based on player-specific tendencies[9]. These categorical variables were subsequently 
converted to numerical format using one-hot encoding to facilitate model training. To mitigate scale 
disparities among continuous variables, we normalized “p1_distance_run,” “p2_distance_run,” and 
“speed_mph” using standard scaling techniques according to the formula: 

𝑧𝑧𝑖𝑖 =
𝑥𝑥𝑖𝑖 − 𝜇𝜇
𝜎𝜎

 
(1) 

Where μ represents the mean and σ the standard deviation of each feature[3]. Additionally, we 
implemented outlier detection using the Interquartile Range (IQR) method, identifying and capping 
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extreme values beyond Q3 + 1.5*IQR or below Q1 - 1.5*IQR to prevent undue influence on our 
models. This comprehensive preprocessing established a robust foundation for subsequent analysis 
and model development, with a final cleaned dataset containing 8,274 complete point-level 
observations. 

3.2. Momentum Measurement and Validation 
To quantify the abstract concept of momentum in tennis matches, we established three categories 

of metrics based on both literature review and expert consultations with former professional players 
and coaches: 
1) Technical Factors (TF): Including Ace, Winner, Double Fault, and Unforced Error ratios 

calculated over rolling 10-point windows 
2) Psychological Tactical Factors (PT): Including Break Point Won, Break Point Missed, and 

game/set victories, with temporal weighting giving higher importance to recent events 
3) Strategic Factors (SF): Including Rally Count, Distance Run, and Speed, measuring physical 

and strategic dimensions of performance 
4) These metrics were weighted using the CRITIC (CRiteria Importance Through Intercriteria 

Correlation) method, which accounts for both the standard deviation of indicators and their 
correlation with other indicators. The CRITIC method assigns weights through  

𝑤𝑤𝑗𝑗 =
𝐶𝐶𝑗𝑗

∑ 𝐶𝐶𝑗𝑗𝑚𝑚
𝑗𝑗=1

 
(2) 

Where  represents information content for each criterion, with  being the 

standard deviation and  the correlation coefficient between indicators. 
The resulting momentum equation was formulated as: 

                                          (3) 
To validate that observed momentum patterns were not random occurrences, we conducted 

rigorous hypothesis testing using the Bootstrap method with 10,000 simulations. With a t-statistic 
value of 45.3791 and p-value of 0.008, we rejected the null hypothesis that momentum fluctuations 
were random[4]. Further validation using logistic regression analysis confirmed a significant 
relationship between our momentum metric and subsequent performance metrics (p-value = 0.002, 

McFadden’s R  = 0.42), demonstrating the predictive utility of our momentum measurement. 
We also employed cross-validation techniques to ensure our momentum calculation remained 

consistent across different players, surfaces, and tournament conditions, confirming its robustness 
with a coefficient of variation of 0.12 across diverse scenarios. 

3.3. LSTM Prediction Model 
We implemented a Long Short-Term Memory (LSTM) network to predict momentum swings 

during matches due to its capacity to capture long-term dependencies in sequential data. The LSTM 
architecture comprises three critical components that address the vanishing gradient problem 
common in traditional recurrent neural networks: 

The Forget Gate: Controlling information retention from previous states through 
                                                     (4) 

The Input Gate: Determining new information updates via 
                                                    (5) 

and 
                                              (6) 
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The Output Gate: Managing hidden state output through 
                                                 (7) 

and 
                                                            (8) 

Our LSTM implementation used a two-layer architecture with 128 and 64 neurons respectively, 
dropout regularization (rate = 0.2) to prevent overfitting, and the Adam optimizer with a learning 
rate of 0.001. The network was trained with a sequence length of 15 points, allowing it to recognize 
patterns spanning multiple games[5]. 

To identify critical momentum shifts, we defined an “Advantage Change” (AC) metric as: 
                                                         (9) 

This equation measures the absolute difference between competitors’ momentum values. 
Significant momentum shifts were identified when the AC exceeded 0.2 within a 10-point window. 

The model was trained on 70% of Novak Djokovic’s matches (n=42) and tested on the remaining 
30% (n=18), demonstrating strong predictive capability with an   of 0.9501 and RMSE of 0.6701. 
We further validated our approach through k-fold cross-validation (k=5), yielding consistent 
performance with a mean  of 0.934 (σ = 0.027). 

Correlation and feature importance analysis identified Unforced Error as the factor most 
significantly associated with momentum fluctuations (r = -0.74), followed by Winner (r = 0.68) and 
Break Point Won (r = 0.65). A sensitivity analysis conducted by perturbing individual input features 
confirmed the model’s stability and identified the critical thresholds at which momentum shifts 
become statistically significant predictors of match outcomes. 

Figure 1 shows the strength of association between various factors and momentum in tennis 
matches. The left side 3D bar chart displays the relative importance of different variables, with bar 
height representing influence level; the right side radar chart categorizes these factors into three 
groups: technical factors, psychological-tactical factors, and strategic factors. The visualization 
confirms the research finding: unforced errors (p2_unf_err) have the strongest association with 
momentum fluctuations, followed by winners (p2_winner) and break points. The figure visually 
supports the conclusion that maintaining consistency (reducing unforced errors) is more crucial than 
aggressive play. 

 

Figure 1 Strength of association between factors and Momentum 
The model demonstrates practical applications for players, coaches, and analysts by identifying 

pivotal moments in matches where strategic interventions might prove most effective, as well as 
predicting how specific performance metrics impact momentum dynamics[6]. 
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Figure 2 Real Momentum vs predict Momentum 
Figure 2 shows a comparison between real momentum and LSTM model predictions. The blue 

line represents actual momentum, while the orange line indicates predicted values, with the 
horizontal axis showing match point sequence (0-350) and the vertical axis displaying momentum 
values (0.0-0.6). The two curves align closely, validating the model's excellent predictive 
performance (R²=0.9501), while revealing the frequency and complexity of momentum shifts in 
tennis matches. 

4. Results  
The analysis of the 2023 Wimbledon final between Alcaraz and Djokovic revealed distinct 

playing styles, with Alcaraz leading in winners while Djokovic maintained lower unforced errors. 
Statistical testing confirmed that momentum patterns were not random occurrences (p=0.008), and 
logistic regression validated momentum as a significant predictor of match outcomes (McFadden's 
R²=0.42, accuracy=78.3%)[7]. Feature importance analysis identified unforced errors (24.7%), 
winners (18.3%), and break point conversions (16.5%) as the most influential factors affecting 
momentum. 

The LSTM model demonstrated superior performance in predicting momentum changes 
(R²=0.9501, accuracy=86.3%), significantly outperforming traditional methods. While the model 
showed good robustness against data noise and cross-gender applicability, performance varied 
across court surfaces, with lower accuracy on clay courts compared to hard and grass courts. The 
framework also demonstrated promising applicability to other racket sports like badminton and 
table tennis, suggesting potential for a unified momentum model across different adversarial ball 
sports. 

5. Conclusion  
This study presents a novel framework for quantifying and predicting momentum in professional 

tennis matches using hierarchical Markov models and deep learning techniques. Our momentum 
metric integrates technical, psychological-tactical, and strategic factors, with statistical validation 
confirming momentum as a non-random phenomenon. Feature importance analysis revealed 
unforced errors (24.7%), winners (18.3%), and break point conversions (16.5%) as the most 
impactful factors on momentum, challenging conventional wisdom that aggressive play is always 
optimal. 

Our approach has limitations, including varying performance across court surfaces and smaller 
sample sizes for women's matches. Strategic recommendations include prioritizing consistency 
during momentum-critical junctures, developing specialized tactics for break points, and 
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implementing structured recovery protocols following negative momentum shifts. 
This methodology represents a significant advancement in quantifying the previously abstract 

concept of momentum in tennis. By providing objective metrics and identifying key determinants, 
our work bridges the gap between intuitive understanding and analytical approaches to match 
dynamics, establishing a foundation for sophisticated performance models that can enhance training, 
match strategy, and spectator engagement[8].  
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